from Agents.llms.LlmBase import LlmBase # Import the new base class
# LangChainDeprecationWarning に従い、新しいパッケージからインポートする
from langchain_ollama import ChatOllama
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import HumanMessage, AIMessage, BaseMessage, SystemMessage, AIMessageChunk
from typing import List, Optional, Any, Dict # Dict を追加
from tools.exception import InterruptedException as InterruptedException # または共通の例外モジュールから
import requests
import requests
import json
class OllamaLLM(LlmBase): # Inherit from LlmBase
def __init__(self, model_identifier: str = "llama2", temperature: float = 0, **kwargs):
super().__init__(model_identifier, temperature, **kwargs) # Call base class constructor
# Specific OllamaLLM initialization
# self.llm is already initialized in LlmBase.__init__ via _initialize_llm()
capabilities = self.get_ollama_model_capabilities(model_identifier)
# Easy image support detection (more accurate detection needed)
if "vision" in capabilities:
self._supports_images = True
print(f"OllamaLLM: モデル '{self.model_name}' は画像対応の可能性があります。")
else:
self._supports_images = False
if "tools" in capabilities:
self._supports_tools = True
else:
self._supports_tools = False
print("capabilities:", capabilities)
if "thinking" in capabilities:
self._supports_thinking = True
else:
self._supports_thinking = False
def _initialize_llm(self) -> BaseChatModel:
try:
self.llm = ChatOllama(
model=self.model_name,
temperature=self.temperature,
**self.llm_kwargs # kwargsではなくself.llm_kwargsを使用
)
return self.llm
except Exception as e:
print(f"OllamaLLM初期化エラー: {e}. モデル名: {self.model_name}, kwargs: {kwargs}")
raise
@property
def supports_images(self) -> bool:
return self._supports_images
@property
def supports_tools(self) -> bool:
return self._supports_tools
def get_ollama_model_capabilities(self, model_name: str):
"""
ollamaのモデルが
imageやtoolを使えるかを返す。
"""
try:
response = requests.post(
"http://localhost:11434/api/show",
json={"model": model_name}
)
if response.status_code == 200:
# 明示的にJSON文字列を辞書に変換
raw = response.json()
if isinstance(raw, str):
data = json.loads(raw)
else:
data = raw
capabilities=data.get("capabilities", {})
return capabilities
print("response.status_code", response.status_code)
return None
except Exception as e:
print(f"モデル情報取得エラー: {e}")
return None
def get_ollama_models(self):
try:
response = requests.get("http://localhost:11434/api/tags")
if response.status_code == 200:
models = response.json().get("models", [])
print("models",models)
return [model["name"] for model in models]
else:
print(f"エラー: {response.status_code}")
return []
except Exception as e:
print(f"API呼び出し失敗: {e}")
return []